

A MAP IMPACT WHITE PAPER

JANUARY 2026

Map Impact

Rebalancing the Climate Peril Lens

Why UK Risk Management Must Move Beyond Flood:
Comparative Analysis of Flood, Heat, Drought and Wildfire in the UK

EXECUTIVE SUMMARY

Flood has long been the dominant lens through which climate risk is understood in the UK. While flooding remains a major and costly peril, recent evidence shows that extreme heat, drought-driven subsidence, and wildfire now represent systemic and escalating risks affecting far larger proportions of the national housing stock and infrastructure.

This paper examines why flood has become embedded in policy, regulation, and financial decision-making, and why other perils have remained under-weighted despite accelerating impacts. Drawing on risk-perception theory, institutional analysis, and the record-breaking summers of 2022 and 2025, it presents a comparative assessment of flood, heat, drought and wildfire exposure.

With the publication of **PRA SS5/25**, regulators now require firms to assess all material physical climate risks. A multi-peril lens is no longer optional – it is essential.

Steve Keohane
Chief Commercial Officer
Map Impact

CONTENT

- 3 Key Insights**
- 4 Introduction**
- 5 Literature Review**
- 7 Flood Risk - The Known Known**
- 9 Heat Stress**
- 10 Drought and Subsidence**
- 11 Wildfire**
- 12 Comparative Analysis**
- 13 Policy and Regulatory Implications**
- 14 Discussion**
- 15 Conclusion**
- 16 Sources and References**

Key Insights

1. Flood dominance is a perception

artefact: Flood's prominence reflects visibility, institutional embedding and historical loss not relative exposure. Fewer than 4% of properties face high flood risk, compared with far larger exposure to heat, drought and wildfire.

2. Heat is now the UK's most systemic climate peril

climate peril: Over 20% of homes already face overheating risk, rising sharply by mid-century, with significant implications for health, productivity, asset values and infrastructure resilience.

3. Drought and wildfire are accelerating structural risks

structural risks: Shrink-swell subsidence affects up to a quarter of UK properties, while wildfire incidents and burned area reached record levels in 2025, including in peri-urban locations.

4. Regulation has now caught up with reality

PRA SS5/25 formalises expectations that firms must evidence all material physical perils, ending flood-only approaches to climate risk management.

Recommendations

Lending: Embed property-level multi-peril data in origination, pricing, and portfolio analytics.

Insurance: Update risk appetite and underwriting to reflect heat and wildfire exposures.

Modelling: Align ICAAP/ORSA with multi-peril stress tests, including compounding events.

Adaptation: Prioritise finance for adaptation investments (cool roofs, shading, ventilation upgrades; water efficiency; defensible space).

Multi-peril climate risk integration is now imperative, ending the historical bias toward flood as the de facto climate hazard in financial decision-making.

By integrating predictive modelling, granular spatial analysis, and climate forecasting, Map Impact's HeatView, DroughtView, and WildfireView provide the best available evidence to empower lenders, insurers, brokers and risk modellers with tools to address climate challenges quickly, transparently, and confidently.

1. Introduction

Flood has long been the defining hazard in the UK's climate risk narrative. Historic events such as the 2007 Gloucestershire floods, the Somerset Levels inundation in 2014, and the Yorkshire floods of 2019 entrenched flood as the primary reference point for both policymakers and the public. The dramatic imagery of submerged homes, displaced families, and emergency rescues has created a deep cultural association between climate change and water excess.

This association has shaped institutional responses. The Flood Re scheme was launched in 2016 to ensure affordability of household flood insurance. The Environment Agency has statutory duties to map flood risk and issue warnings. Mortgage lenders and conveyancers routinely perform flood checks before approving loans. Flood is thus woven into the regulatory fabric.

By contrast, extreme heat, drought-driven subsidence, and wildfire have historically been treated as 'lesser' perils – risks more associated with Mediterranean climates than a temperate island. Even when droughts occurred (e.g. 1976, 2018, 2022), they were treated as anomalies rather than systemic risks. Wildfire was seen as a rural issue, and overheating was largely absent from planning discourse.

The summer of 2022 began to challenge this perception, with the UK recording its first 40°C Day, widespread drought, and unprecedented wildfires. The summer of 2025 has confirmed the problem; the UK experienced its hottest summer on record, with four separate heatwaves, record vegetation fires, and widespread hosepipe bans. These events underline that the climate peril landscape is shifting, and that reliance on a flood-dominant lens is increasingly dangerous.

2. Literature Review

2.1 Risk perception and salience

Risk perception research explains why flood dominates. Slovic (1987) shows risk judgements depend on psychometric factors (dread, visibility, familiarity), not only probabilities and consequences. Flood imagery dominates news cycles; overheating deaths occur in private, and subsidence emerges slowly. Kasperson et al. (1988) describe social amplification of risk, whereby media and institutions heighten some hazards and mute others. UK flood events have been amplified for decades; heat and drought have been attenuated. Cultural theory (Douglas & Wildavsky, 1982) adds that societies filter risks through cultural archetypes; Britain's identity as a 'wet island' elevates flood and downplays water scarcity.

2.2 Institutional embedding of flood risk

Flood is uniquely institutionalised. The EA's NaFRA mapping underpins planning and insurance; the National Planning Policy Framework (NPPF) imposes sequential and exception tests in floodplains; Flood Re subsidises household insurance; the Law Society issues flood risk practice notes. No equivalent statutory apparatus exists for overheating, subsidence, or wildfire.

2.3 Data asymmetries and availability bias

Flood benefits from decades of investment in models and maps. By contrast, property-level overheating and drought exposure data have only recently matured (e.g., earth observation products and BGS hazard

layers). The availability heuristic (Tversky & Kahneman, 1973) means memorable, well-mapped floods are judged more probable; 'invisible' perils (heat deaths, hairline structural cracks) feel less risky.

2.4 International comparisons

In France in 2003 approximately 15,000 heat-related deaths prompted sweeping public-health and housing reforms (Fouillet et al., 2006). In Spain and Portugal, drought is treated as a primary national risk with embedded rationing frameworks. In California and Australia, wildfire shapes insurance markets and land-use planning. The UK has been slower to reorient because past losses from heat, drought, and wildfire were less catastrophic, but trajectories now point to systemic impacts.

2.5 Regulatory context and blind spots

The Bank of England's CBES (2021) revealed that firms tended to apply blunt portfolio overlays for the non-flood perils due to lack of property-specific granular data. PRA SS3/19 (2019) set expectations for climate risk management, but practice remained flood-centric. The publication of PRA Supervisory Statement SS5/25 (2025), which replaces SS3/19 and finalises the proposals set out in CP10/25, now makes clear that firms must assess and evidence all material physical climate risks, including heat, drought and wildfire, within their governance, risk management, capital planning and scenario analysis frameworks. SS5/25 explicitly acknowledges persistent data gaps but emphasises that firms must use the best available evidence, apply transparent assumptions, and avoid reliance on single-peril approaches. >>>

This marks the strongest regulatory signal to date that the UK's prudential regime requires multi-peril climate risk integration, ending the historical bias toward flood as the de facto climate hazard in financial decision-making. At EU level, EIOPA (2021) urges integration of heat and wildfire into solvency planning. IPCC AR6 (2022) emphasises compounding risks of heat, drought, and wildfire in temperate regions.

2.6 Path dependency and lock-in

Once institutions invest in a hazard assessment process, expertise and

resources accumulate around it, reinforcing primacy (path dependency). Hydrology dominates university curricula and public agencies; fewer resources exist for urban climatology or geotechnical drought risk. This lock-in perpetuates imbalance even as the hazard landscape evolves and widens.

References: Slovic (1987); Kasperson (1988); Douglas & Wildavsky (1982); BoE (2021); PRA (2019); PRA (2025); EIOPA (2021); IPCC (2022); LS (2016); EA (2023); Tversky & Kahneman (1973); Fouillet (2006); Flood Re (2016); MHCLG (2021)

Map Impact's HeatView product in Richmond, London, highlighting the locational hazard associated with heat wave events (with high hazard locations depicted in red, and low hazard depicted in green)

3. Flood Risk - The Known Known

Flood is perceived as the archetypal UK climate peril. Its prominence reflects historical experience, economic impact, institutional frameworks, and political visibility.

3.1 Historical experience

- Summer 2007 (predominantly Gloucestershire & Yorkshire): Prolonged rainfall flooded over 55,000 homes and businesses, displaced tens of thousands, and left around half-a-million people without mains water when the Mythe Water Treatment Works was inundated. Total damages exceeded £3.2 billion, among the most expensive weather disasters in modern UK history.
- Winter 2013/14: A sequence of Atlantic storms caused extensive flooding across southern England. The Somerset Levels were submerged for several weeks, requiring military assistance. Insured losses were around £1.1 billion.
- Winter 2015/16 (Storms Desmond, Eva and Frank): Severe rainfall inundated northern England and parts of Scotland. The ABI estimated insured losses of £1.3 billion. In Cumbria, communities have been flooded multiple times in just a decade.
- November 2019: Heavy rainfall caused significant urban flooding in South Yorkshire, Derbyshire, and the East Midlands. Though smaller in scale than 2007, it underlined the vulnerability of low-lying towns and infrastructure corridors.

3.2 Economic and insured losses

- Flood damages are large and lumpy
- Direct damage to homes often totals £20,000 - £50,000 per property.
- Business interruption cripples local economies for months.
- Infrastructure disruption (roads, rail, treatment plants, substations) amplifies indirect costs.
- Insurance payouts reach £1 - 3 billion in major years.

3.3 Institutional frameworks

- The Environment Agency maintains detailed public flood maps used in planning, insurance, and conveyancing.
- The National Planning Policy Framework imposes strict sequential and exception tests in floodplains.
- Flood Re (2016) ensures high-risk households can access affordable cover.
- Flood warnings serve over a million properties.

No other peril has this level of mapping, statutory controls, and insurance backstop.

3.4 Political prominence

Floods are photogenic and immediate. Prime Ministers tour flooded towns and Parliament debates follow. The 2014 Somerset Levels floods became a national controversy over dredging and investment. By contrast, heatwave deaths are dispersed and largely invisible, attracting less political theatre.

3.5 Limits of a flood-centric lens

Recent Environment Agency modelling highlights the scale of the challenge but also the narrow footprint of high flood risk relative to other perils. The National Assessment of Flood & Coastal Erosion Risk in England (NaFRA 2024) identifies 6.3 million properties currently at risk from rivers, the sea or surface water. Climate projections indicate this could rise to around

8 million by mid-century, equivalent to roughly one in four properties in England. However, only a fraction of these sit in the high-risk bands commonly used in the insurance and lending decisions. By contrast, around 20% of homes already face over-heating, 15–25% lie on shrink-swell clays with subsidence potential, and around 7% sit in wildfire susceptible areas. Flood is therefore highly destructive and institutionally embedded but still covers a much narrower proportion of the national property stock than the systemic perils emerging from heat, drought and wildfire.

Flood is the 'known known' – catastrophic and costly – but too narrow a lens for today's risk landscape.

References: Pitt Review (2008); ABI (2016); ABI (2019); EA (2014); EA (2023); EA (2024)

Flood is the UK's most established and institutionalised climate peril. It is well mapped, heavily regulated, and politically salient, with dedicated planning controls, insurance mechanisms and public warning systems. Flood losses are episodic but severe, driving major insured and societal costs. **Despite its prominence, high flood risk affects a relatively small proportion of properties compared with the far broader and growing exposure to heat, drought-driven subsidence and wildfire.**

4. Heat Stress - The Systemic Peril in Plain Sight

4.1 2022 and 2025 - watershed summers

In July 2022, the UK recorded its first 40°C day (40.3°C at Coningsby). Rail lines buckled, airport runways softened, schools closed, and approximately 3,000 excess deaths were recorded. Multiple grassfires reached London suburbs.

In 2025, the Met Office confirmed the hottest summer on record by seasonal mean, with four heatwaves. The continuous excess seasonal warmth, rather than a single peak, caused health and infrastructure stress. Hosepipe bans were introduced across multiple regions; repeated heat-health alerts were issued.

4.2 Housing stock and exposure

The UK Climate Change Committee (CCC) 2021 report estimated approximately 20% of homes (approximately 5.7 m) already face overheating, rising to >50% by 2050 without adaptation. Vulnerability clusters in:

- Modern flats - airtight, insulated, under-ventilated.
- Post-war tower blocks - concrete mass and large unshaded glazing.
- Dense terraces - limited shading and cross-ventilation.

Urban Heat Islands add anything from 2 to 7°C at night in city centres (London, Birmingham, Manchester, Leeds), intensifying heat stress for residents.

4.3 Health and social vulnerability

Heat is a 'silent killer'. The elderly, infants, and those with cardiovascular/respiratory disease face highest risk. Social inequities magnify impacts. Lower-income households often lack cooling or avoid use of fans/AC due to energy costs, whilst social housing estates can be poorly ventilated. Almost 5.5 million children are living in homes at risk of overheating with over a million of them living in London, mostly in social housing. The other end of the age spectrum is affected too, and reports of excess deaths due to extreme heat in 2022 and lately in 2025 were concentrated among older adults in urban flats.

4.4 Infrastructure, productivity, and economy

- Productivity drops by 2 to 4% on very hot days (Hsiang et al., 2017), with economy-wide output losses.
- Transport suffers (buckled rails, softened roads, airport closures).
- Energy systems face peak cooling demand while drought reduces cooling-water availability.
- Healthcare demand surges during heatwaves.

4.5 International comparisons

France's 2003 heatwave caused approximately 15,000 deaths and catalysed reforms in health surveillance and urban planning (Fouillet et al., 2006). In 2010 Russia saw tens of thousands of deaths amid heat and wildfire. Southern Europe now treats heatwaves as annual national emergencies. The UK's 2025 summer places it firmly within this evolving European context.

Heat is the UK's most systemic climate peril nationwide, affecting millions of homes, thousands of lives, and multiple infrastructures simultaneously. Unlike flood, it cannot be held back with defences. Adaptation requires retrofitting homes, redesigning cities, and strengthening healthcare resilience.

5. Drought and Subsidence - The Hidden Structural Loss Driver

5.1 Shrink-swell soils and structural vulnerability

Shrink-swell clays underlie about a quarter of all UK homes. In drought, soils contract, destabilising foundations and cracking walls.

In 2018 subsidence claims were approximately £400m (approximately 4 times a 'typical' year). In 2022 approximately 23,000 claims were made at an average of £9,600 per payout.

Despite high aggregate costs, subsidence rarely makes headlines, dispersing quietly across years and regions.

For lenders providing long-term mortgages, the exposure to default is a hidden potential risk where insurers may drop out at any time over the coming years.

5.2 The drought of 2025

The 2025 summer has brought widespread drought. Several English water companies imposed hosepipe bans across the South East,

South West, and Midlands. Soil-moisture deficits in clay belts reached extreme levels.

Geotechnical assessors and insurers warn of a surge in claims during autumn/winter 2025/26 as soils will continue to shrink and settle.

5.3 Broader drought impacts

- Water security: The Environment Agency warns demand will outstrip supply by 2050 without action.
- Agriculture: Reduced cereal yields and stressed livestock.
- Energy: Thermal and nuclear plants face constraints due to reduced cooling water.

5.4 Historical perspective

The 1976 drought led to standpipes and rationing, embedding public memory of water scarcity. Recent droughts (2018, 2022, 2025) have occurred against a hotter baseline, increasing recurrence and compounding with heatwaves.

Subsidence is a hidden structural loss driver with widespread exposure, high cumulative cost, and low visibility. **As droughts intensify, subsidence could rival flood in long-running financial impact, particularly across the clay belts of southern and eastern England.**

6. Wildfire - From Peripheral to Prominent

6.1 The rise of wildfire hazard in the UK

Wildfire was historically viewed as a southern European or Australian problem. The UK has recently seen a dramatic increase in incidents:

- 2022 – Fire & Rescue Services in England & Wales responded to 994 wildfire incidents, more than double the long-term average. The Wennington fire in East London destroyed 18 homes, proving suburban areas are not immune.
- 2025 – Has now surpassed all previous records for UK wildfire activity. By 4th September 2025, Fire & Rescue Services in England & Wales had already responded to 996 wildfires, exceeding the 994 incidents recorded in the whole of 2022, previously the worst year on record. The European Forest Fire Information System (EFFIS) reported that by mid-August 2025, more than 47,800 Ha had burned across the UK – the largest burned area since records began in 2012, and over 19,000 Ha more than the previous record year.

A total of 181 fires larger than 30 Ha were also recorded, again the highest number on record. These figures demonstrate that wildfire in the UK is no longer a rare extreme but an accelerating peril, driven by hotter, drier summers and increased ignition pressure across the wildland-urban interface.

6.2 Exposure and vulnerability

Ordnance Survey estimates approximately 1.8 million homes (approximately 7%) lie in wildfire-prone zones. Risk is highest in the wildland-urban interface (WUI) – suburban fringes adjoining heath, scrub, or woodland. Ignition sources range from barbecue accidents to infrastructure faults and arson.

6.3 Forward trajectory

UKCPI8 projections indicate hotter, drier summers becoming more frequent, with annual burned area expected to double or even triple by 2050 under high-emission pathways. Like surface-water flooding a decade ago, wildfire has been under-recognised in historic loss data, creating pricing blind spots if firms extrapolate from the past.

The 2025 season accelerates the trajectory, making clear that insurance, lending, and planning frameworks must integrate wildfire into risk appetite, exposure analytics, and adaptation design (e.g., defensible space, vegetation management). **This latest season establishes that UK wildfire risk now behaves as a compound climate peril, interacting with heat and drought conditions rather than operating independently of them.**

7. Comparative Analysis

The preceding sections show that the UK's climate risk profile has changed faster than its institutional frameworks. Flood continues to command attention, yet heat, drought and wildfire already touch far more households and infrastructure, whilst also increasing in frequency and severity.

The table below contrasts these perils side-by-side. It provides a simple visual summary of their relative scale, recent incidents and likely future pathways, highlighting the widening gap between perceived risk (flood) and actual systemic risk (heat, drought & wildfire).

Peril	% Properties Exposed	2025 Evidence	Loss / Claims Data	Trajectory
Flood	1 - 4%*	EA maps stable; local flash floods	£1 - 3 bn losses in major years	Rising with sea-level & rainfall
Heat	≥20% (approx. 5.7m homes)	Hottest summer on record; 4 heatwaves	Approx. 3,000 deaths in 2022; 2025 excess est >5000	≥50% homes overheating by 2050
Drought / Subsidence	15 - 25% (clay soils)	Hosepipe bans; high soil deficits; claims surge 2025	£400 m (2018); Approx. 23,000 claims (2022)	More frequent & intense droughts
Wildfire	Approx. 7% (Approx. 1.8 m homes)	Record incidents in 2025; extended peat/heath fires	994 incidents (2022); 996 (to Sep 2025)	Burned area doubling/tripling by 2050

* Note: High-risk classifications typically represent 1 - 4% of the stock, but the EA's NaFRA 2024 identifies 6.3 million properties across all risk bands and sources of flooding, rising to approximately 8 million under mid-century climate projections

8. Policy and Regulatory Implications

UK and EU financial system supervisors now expect multi-peril climate risk management.

- PRA SS5/25 (2025) now sets binding expectations for firms to identify, measure, monitor and manage climate-related financial risks across all relevant perils, requiring credible, evidence-based assessments of heat, drought, and wildfire alongside flood. It clarifies that physical risk must be embedded across risk appetite, credit risk, underwriting, ICAAP/ORSA, and scenario analysis.
- BoE CBES (2021) revealed material data gaps for non-flood perils and over-reliance on portfolio overlays.
- PRA CP10/25 (2025) provided the consultation basis for SS5/25, signalling that multi-peril physical risk assessment was becoming a supervisory priority.
- EIOPA (2021) urges integration of heat and wildfire into solvency planning.
- IPCC (2022) emphasises compounding risks.

SS5/25 is therefore the point at which multi-peril climate risk management becomes an enforceable supervisory expectation rather than emerging guidance.

This has implications for lenders. Mortgage portfolios on clay belts face Expected Credit Loss underestimation if subsidence is ignored; overheating risk may affect valuation and affordability. For ICAAP reporting, models should incorporate multi-peril property-level hazard variables.

Similarly, implications for insurers also follow; under-pricing subsidence and wildfire risks where historical losses understate forward risk; Own Risk Solvency Assessments (ORSA) need multi-peril scenarios. Reinsurers face correlation risk that challenges diversification assumptions.

8.1 Practical actions

- Embed property-level multi-peril data in origination, pricing, and portfolio analytics.
- Update risk appetite and underwriting to reflect heat and wildfire exposures.
- Align ICAAP/ORSA with multi-peril stress tests, including compounding events.
- Prioritise finance for adaptation investments (cool roofs, shading, ventilation upgrades; water efficiency; defensible space).

References: BoE (2021); PRA (2019); PRA (2025); EIOPA (2021); IPCC (2022)

9. Discussion - Reframing UK Climate Perils

Flood's primacy is historically understandable but now distorts priorities. The 2025 summer demonstrates that heat is systemic and nationwide; drought/subsidence is chronic and costly; and wildfire is the fastest-emerging acute peril.

These perils also raise equity concerns:

- Heat - disproportionately affects low-income, elderly, and socially isolated residents.
- Drought - affects farmers and food prices.
- Wildfire - threatens peri-urban communities with limited resources for mitigation.

A more useful framing is 'historic vs systemic' perils. Flood is historic and acutely destructive. Heat, drought, and wildfire are systemic and escalating, unfolding across large swathes of the housing stock and infrastructure, with compounding effects during multi-hazard summers.

Closing the perception gap requires:

- Data parity (granular hazard datasets).
- Regulatory parity (multi-peril requirements).
- Investment parity (adaptation beyond flood defences).
- Justice and health framing (focus on vulnerable groups).

References: CCC (2021); BoE (2021); IPCC (2022); Met Office (2025)

Conclusion

Flood risk will always ensue – but its dominance has created blind spots. The record-breaking summer of 2025 demonstrates that extreme heat, drought, and wildfire are now material perils in the UK. They affect millions of homes, disrupt infrastructure, and stress financial stability.

The UK must rebalance its climate risk frameworks; integrate all perils into regulation and prudential planning; invest in property-level data and analytics; and

redirect resources to adaptation beyond flood. What were once considered 'lesser' perils are now among the defining risks of the 21st century.

With the publication of SS5/25, regulators now require firms to demonstrate robust assessment of all material physical perils. The era in which flood alone could satisfy climate-risk governance has formally ended – so a multi-peril lens is not optional – it is essential.

Key takeaways

Move beyond flood-only thinking:

Flood remains critical, but it no longer captures the full scale or nature of UK climate risk exposure.

Adopt a multi-peril risk framework:

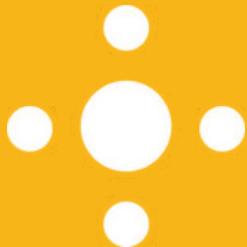
Heat, drought/subsidence and wildfire are now systemic risks that must be assessed alongside flood at property and portfolio level.

Align data and governance with SS5/25:

Firms must demonstrate credible, evidence-based assessment of all material physical risks across underwriting, lending, ICAAP and ORSA processes.

Looking forward

As climate impacts intensify, the gap between perceived and actual risk will become increasingly costly. Record heat, drought and wildfire events in 2025 demonstrate that the UK's climate risk profile has already shifted. Addressing this challenge requires better data, clearer regulatory alignment, and a move from


single-peril defences toward systemic resilience planning. Organisations that adopt a multi-peril lens – integrating heat, drought, wildfire and flood into decision-making – will be better positioned to manage financial risk, protect vulnerable communities, and support long-term climate adaptation.

Resources and references

- Association of British Insurers (2016). Flood losses and claims data. London: ABI.
- Association of British Insurers (2019). Subsidence claims data. London: ABI.
- Association of British Insurers (2019). UK Insurance and long-term risk: Flooding and climate change. London: ABI.
- Bank of England (2021). Climate Biennial Exploratory Scenario (CBES). London: Bank of England.
- British Geological Survey (2017). Geological Hazards: Shrink-swell. Keyworth: BGS.
- Centre for Ageing Better (2025). Extreme Summer Heat could lead to 5000 deaths: CAB
- Climate Change Committee (2021). Progress in adapting to climate change: 2021 Report to Parliament. London: CCC.
- DEFRA/ Environment Agency (2025). Environmental Indicator Framework – Theme F: Resilience
- Department of Health and Social Care (2022). Heatwave Plan for England. London: DHSC.
- Douglas, M. & Wildavsky, A. (1982). Risk and Culture. Berkeley: University of California Press.
- Environment Agency (2014). Somerset Levels and Moors: Actions taken following 2013/14 floods. London: EA.
- Environment Agency (2020). Water resources planning framework. London: EA.
- Environment Agency (2023). Flood Warnings Service. London: EA.
- Environment Agency (2023). National Flood Risk Assessment (NaFRA). London: EA.
- Environment Agency (2024). Flood risk assessments: Climate change allowances. London: EA.
- Environment Agency (2025). National Assessment of Flood & Coastal Erosion Risk in England 2024 (NaFRA 2024). London: EA.
- European Forest Fire Information System (EFFIS) (2025). 2025 UK Wildfires – Burned Area & Incident Summary
- European Insurance & Occupational Pensions Authority (2021). Opinion on climate change risk scenarios in ORSA. Frankfurt: EIOPA.
- Euro Tempest (2025). Subsidence Risk Assessment Report: ET
- Flood Re (2016). About us. London: Flood Re.
- Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guiheneuc-Jouyaux, C., ... & Hémon, D. (2006). "Excess mortality related to the August 2003 heat wave in France." European Journal of Public Health, 16(6), pp. 583–591.
- House of Commons Environment, Food and Rural Affairs Committee (2015). Winter floods 2013–14.
- IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Sixth Assessment Report. Geneva: IPCC.
- Kasperson, R.E., Renn, O., Slovic, P., Brown, H.S., Emel, J., Goble, R., Kasperson, J.X. & Ratnick, S. (1988). "The social amplification of risk: A conceptual framework." Risk Analysis, 8(2), pp. 177–187.
- Law Society (2016). Flood Risk Practice Note. London: LS
- Marsh, T. & Hannaford, J. (2007). UK Hydrological Review. Wallingford: Centre for Ecology & Hydrology.
- Met Office (2022). UK Climate: July 2022. Exeter: UKMO.

Resources and references (continued)

- Met Office (2025). Summer 2025: Hottest on record with four heatwaves. Exeter: UKMO.
- Ministry of Housing, Communities and Local Government (2021). National Planning Policy Framework. London: MHCLG.
- Moritz, M.A., Batllori, E., Bradstock, R.A., Gill, A.M., Handmer, J., Hessburg, P.F., ... & Syphard, A.D. (2014). "Learning to coexist with wildfire." *Nature*, 515, pp. 58-66.
- National Fire Chiefs Council (2025). New Wildfire record sparks urgent call for fire service investment. NFCC
- National Fire Chiefs Council (2025). Record numbers of wildfires are putting services under huge strain
- Ordnance Survey (2023). Wildfire Risk Mapping in Great Britain. Southampton: OS.
- Pitt, M. (2008). The Pitt Review: Lessons learned from the 2007 floods. London: Cabinet Office.
- Prudential Regulation Authority (2019). Supervisory Statement SS3/19: Enhancing banks' and insurers' approaches to managing the financial risks from climate change. London: PRA.
- Prudential Regulation Authority (2025). Consultation Paper CP10/25: Managing physical climate risks. London: PRA.
- Prudential Regulation Authority (2025). Supervisory Statement SS5/25: Managing climate-related financial risks. London: PRA
- Resolution Foundation (2025). Analysis of 2022 English Housing Survey. RF
- Slovic, P. (1987). "Perception of risk." *Science*, 236(4799), pp. 280-285.
- Tversky, A. & Kahneman, D. (1973). "Availability: A heuristic for judging frequency and probability." *Cognitive Psychology*, 5(2), pp. 207-232.
- UK Climate Projections (2018). UKCP18: Climate projections for the UK. Exeter: Met Office.
- Home Office (2023). Fire and rescue incident statistics. London: Home Office.

mapimpact.io

info@mapimpact.io

Copyright ©2026 Map Impact. All rights reserved.

This document is protected by copyright laws. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the copyright owner, except in the case of brief quotations for review or academic purposes,

which must acknowledge the source.

For permission requests, contact: info@mapimpact.io